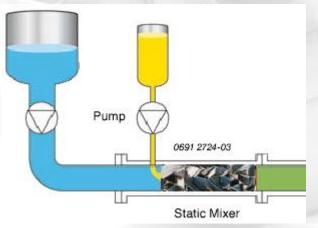
PIPELINE MIXING - STATIC MIXERS


Advantages of static mixers:

- can be built into an existing pipeline, thereby significantly reducing the built-up area compared to using traditional apparatus with a rotating agitator
- no rotating parts (shaft, bearings, seals or drive motor) which reduces investment costs
- if properly applied, have less energy consumption compared with rotating agitators
- are silent, do not require electrical power supply, and are thus suitable for working in potentially explosive atmospheres

Disadvantages of static mixers:

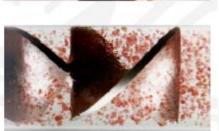
- short residence time of mixture in mixer
- require precise dosing of components in time (precision dosing pumps are usually expensive)

Main type of static mixers

Helical static mixer - KENICS

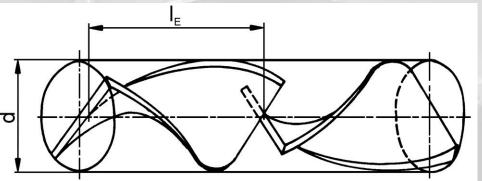
Turbulent Blending KM Static Mixer

The KM Static Mixer produces rapid mixing by inducing circular patterns that reverse direction at each element intersection.

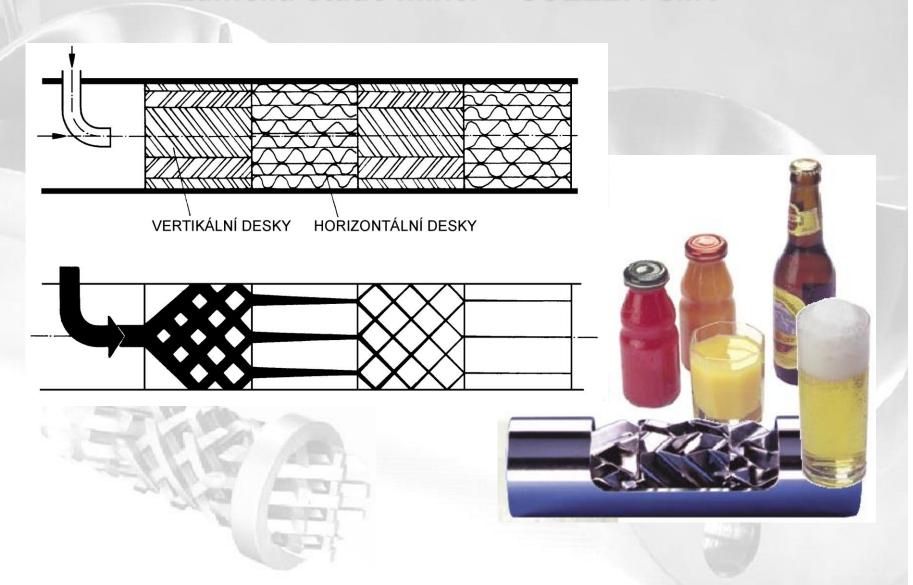

Laminar Blending KM Static Mixer

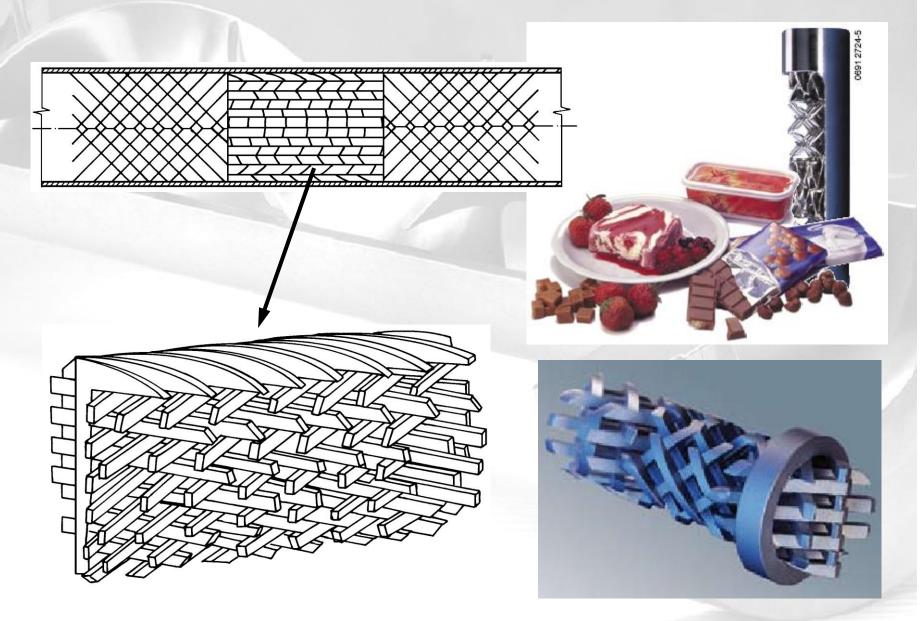
The alternating helical elements of the KM Static Mixer continually divide, stretch and reorient the flow stream to produce complete mixing with minimum pressure drop.

Liquid/Liquid Dispersion


The uniform turbulent shear field of the KM Mixer quickly disperses immiscible liquids and produces a narrow drop size distribution.

Gas/Liquid Dispersion


Gases can be incorporated into turbulent liquids using the KM Static Mixer. Mass transfer rates are dramatically enhanced to maximize absorption or reaction.



Lamella static mixer – SULZER SMV

Latticed static mixer - SULZER SMX

Static mixer - SULZER SMF

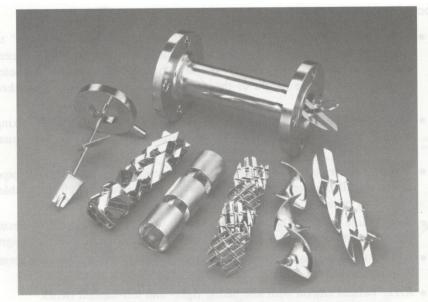
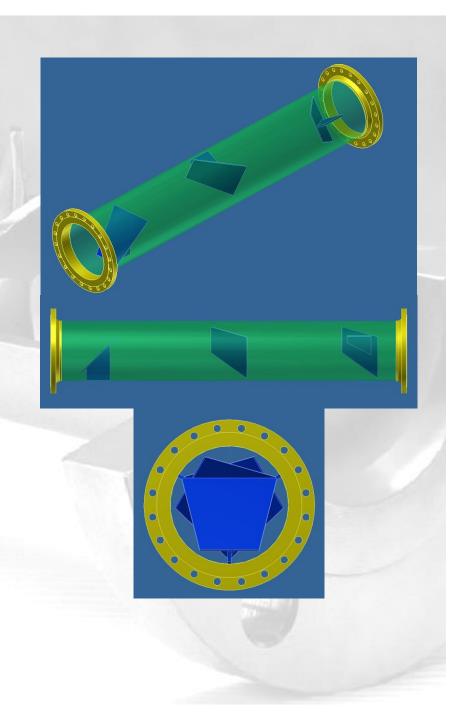
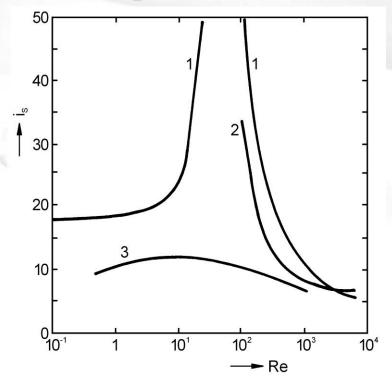



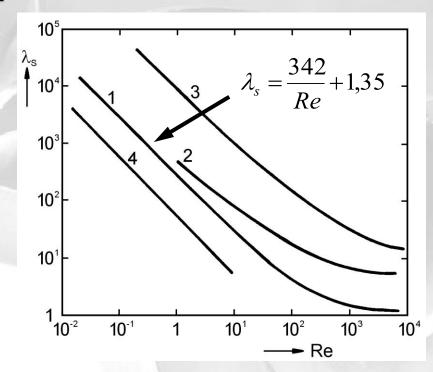
Figure 7-16 Static mixer design options. From left: vortex mixer (type KVM), corrugated plate (type SMV), wall-mounted vanes (type SMF), cross-bar (type SMX), helical twist (type KHT), cross-bar (type SMXL). (Courtesy of Koch-Glitsch, LP.)

Table 7-4 Rough Guidelines for Applications in the Laminar and Turbulent Flow Regimes^a

Flow Regime	Static Mixer Design									
	KMS	KMX	HEV	SMV	SMX	SMXL	SMR	KVM	SMF	ISG
Laminar	100 0			or my	devous	DESIGN CON	r simal			
Mixing/blending	c	a			С	С			a	a
High-low viscosity		a			С	a				a
Dispersion	a	a			С	a				a
Heat transfer	c				b	С	С			
Plug flow	b				C	b	c*			
Turbulent										
Mixing/blending										
High turbulence	a		С	c [†]				С		
Low turbulence	c			С	a	a			a	
Dispersion										
Liquid-liquid	С			С	a	a	c*		a	
Gas in liquid	c			С	a	a	a*		a	
Liquid in gas	a			С	a					
Fluidized beds					c [‡]					

 $[^]a$ a, Applicable; b, typically applied; c, best design choice. *, Where temperature control is required; † , especially for very large diameters and nonround cross-sections; ‡ , gas fluidized solid particles, specialized design (Koch-type KFBE).




Main parameters of static mixers

Pressure drop in pipe with static mixers

$$e_z = \lambda_s \, \frac{l}{d} \, \frac{\overline{u}^2}{2}$$

Blending in static mixers

1 – helical static mixer $(l_E/d=2)$, **2** – disk static mixer, **3** – lamella sttic mixer $(l_E/d=1)$, **4** – free pipe