PUMPS AND GAS-MOVING EQUIPMENT

Pumps

Positive-displacement pumps:- reciprocating pump (piston, membrane)

- rotary pump (gear, vane, screw)

Centrifugal pumps: • radial-flow pump (centrifugal)

- axial-flow pump (propeller)

Basic parameters of pumps

- flow-rate of pumping liquid $\dot{V}\left[\mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}\right]$ (discharge)
- mechanical energy added to fluid by pump e(Y) $\left[\mathcal{J} \cdot \mathrm{kg}^{-1}\right]$

$$
\frac{1}{2} \kappa_{1}^{2} \bar{u}_{1}^{2}-\frac{1}{2} \kappa_{2}^{2} \bar{u}_{2}^{2}+\frac{p_{1}}{\rho}-\frac{p_{2}}{\rho}+g h_{1}-g h_{2}-e_{z}+e=0
$$

- brake power of pump $\boldsymbol{P}_{p}[\mathrm{~W}]$

$$
P_{p}=\frac{\rho \dot{V} \cdot Y}{\eta}
$$

efficiency of liquid pumping

- electric power input $\boldsymbol{P}_{e}[W]$

Typical shape of pump characteristics

Positive-displacement pump

Centrifugal pumps

Suction lift of pumps - NPSH

If the pressure on the liquid in the suction line drops below the vapor pressure $p^{\prime \prime}$, some of the liquid flashes into vapor - rise of cavitation. Than no liquid can be drawn into pump, and vibration can occur.

To avoid flashes of vapour or cavitation, the pressure at the inlet of the pump must be greater than this vapor pressure and exceed it by a value termed the Net Positive Suction Head - NPSH $\left(\Delta p_{s}\right)$.

Determination of duty point of pump

Duty point of pump is obtained as intersection of system characteristic (pipe and local resistance, filters, heat exchangers) with pump characteristic.

Parallel and series connection of pumps

EXAMPLE: Design of basic parameters of pump

Water with temperature $80^{\circ} \mathrm{C}\left(\rho=971,8 \mathrm{~kg} \cdot \mathrm{~m}^{-3}\right.$ a $\left.\mu=0,355 \mathrm{mPa} \cdot \mathrm{s}\right)$ is pumping from storage tank with atmospheric pressure into heat exchanger with pressure atmospheric 100 kPa . Length of suction pipe is 15 m , total length of delivery pipe is 55 m . Suction and delivery pipes are made from slightly corroded steel tubes with outside diameter 76 mm and thickness of wall 3 mm (average roughness of pipe wall $\mathrm{k}_{\mathrm{av}}=0.3 \mathrm{~mm}$). Choose suitable pump with give discharge of water about $3001 \cdot \mathrm{~min}^{-1}$. Determine duty point of pump and check suction lift of pump.

Selection of pump type

Конструкционные материалы

Составная часть	NM, NMD	B-NM, B-NMD	I-NM, I-NMD
Kорпус насоса Соединит. часть	$\begin{gathered} \text { 4yгун } \\ 200 \text { ISO } 185 \end{gathered}$	$\begin{aligned} & \text { Бронзa } \\ & \text { G-Cu } \mathrm{Sn} 10 \text { UNI } 7013 \end{aligned}$	$\begin{aligned} & \text { сталь Cr Ni Mo } \\ & \text { AISI } 316 \end{aligned}$
Paбочее копесо	Латунь P-CuZn 40 Pb 2 UN1 5705		
NM 17	$\begin{gathered} \text { Чугун } \\ 200 \text { ISO } 185 \end{gathered}$	$\begin{gathered} \text { Бронза } \\ \text { G-Cu Sn } 10 \text { UNi } 7013 \end{gathered}$	
Ban	$\begin{gathered} \text { сталь } \mathrm{Cr} \mathrm{Ni} \\ \text { AISI } 303 \text { До } 2.2 \mathrm{kBT} \end{gathered}$	сталь Cr Ni Mo AISI 316 AISI 316	
	сталь Cr AISI 430 Ot 3 kBr до 9.2 kBr		
Механическое уплотнение		Уголь - керамика	

Конструкция

Центробежные монобпочные насосы с прямым подсоединением
Серия NM: одно рабочее колесо
Серия NMD: два противопопожно размешенных рабочих копеса (с уравновешенным осевым усилием).
Растубы: резьбовые UNI-ISO 228/1.
Применение
Перекачка чистых жиджостей, не содернацих абразивных примесей и не агрессивных для материалов, из которых изготовлен насос (солержание Водоснабжение.
Использование в установи
охлаждения и циркупяции.
испопьзование в бытовой и промышленной сфере.
ирригаиия
Эксплуатационные ограничения Температура жидкости не более $90^{\circ} \mathrm{C}$.
Температура окружаюшего воздуха не бопее $40^{\circ} \mathrm{C}$.
Манометрическан высота всасывания не более 7 m .
Максимально допустимое конечное давление в корпусе насоса: 10 бар Непрерывный режим эксппуатации.
Электродвигатель
Асинхронный двухполюосный электрод
(копичество оборотов $\mathrm{n}=2900$ об./мин.)
NM, NMD: трехфазный до 3 кBT-230/400 B ($\pm 10 \%$

Изопяция класса ${ }^{\text {F }}$.
Конструкции в соответствии со стандартом IEC 34.
Специальные исполнения под заказ для работы с другими напряжениями
для работы с частотой 60 Ги
с защитным устройством IP 55
спеииалыные меи употнения
спечиальные мех. уппотнения
длямпературой
Гарантия
Оиин год (в
Область применения $n \approx 2900$ об./мин.

Determination of system (pipe) characteristic

$\boldsymbol{V}\left[\boldsymbol{I} \cdot \boldsymbol{m i n}^{\mathbf{- 1}}\right]$	$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$
$\boldsymbol{R e}$	$2,08 \mathrm{E}+04$	$4,14 \mathrm{E}+04$	$8,23 \mathrm{E}+04$	$1,25 \mathrm{E}+05$	$1,66 \mathrm{E}+05$	$2,08 \mathrm{E}+05$	$2,47 \mathrm{E}+05$	$2,91 \mathrm{E}+05$
$\boldsymbol{\lambda}$	0,0347	0,0323	0,0308	0,0303	0,0300	0,0298	0,0297	0,0296
$\boldsymbol{H}_{\boldsymbol{p}}[\boldsymbol{m}]$	16,51	16,57	16,78	17,14	17,64	18,27	19,05	19,96

Determination of duty point of pump

NM
Моноблочные центробежные насосы с резьбовыми растубами

Характеристические кривые $n \approx 2900$ об./мин.

Gas-moving machinery

Compression ratio $p_{2} / p_{1}: \bullet$ Fans (small value of $C R \approx 1$, incompressible flow)

- Compressors (greater value of CR)
- Blowers (atmospherics suction pressure, CR < 3)

Vacuum pumps - equipment for gases removal from closed spaces

Positive-displacement compressors

Dynamic compressors

Two-stage radial turbocompressor
Axial turbocompressor

Compressor duty cycle

Basic parameters of compressors

- brake power of compressor $\boldsymbol{P}[\mathrm{W}] \quad \eta_{c a d}=\eta_{a d} \cdot \eta_{m}=0.5 \div 0.8$

$$
P=P_{a d} / \eta_{c a d}
$$

adiabatic efficiency

- mechanical energy work $\boldsymbol{e}(Y)\left[J \cdot \mathrm{~kg}^{-1}\right]$

$$
\begin{aligned}
& \mathrm{d} e=\mathrm{d} p / \rho \\
& \text { adiabatic process: } p \cdot v^{k}=\text { const } \\
& \text { polytrophic process: } \kappa \rightarrow n
\end{aligned}
$$

$$
P_{a d}=e_{a d} \dot{m}=e_{a d} \rho_{1} \dot{V}=\frac{\kappa}{\kappa-1} p_{1} \dot{V}_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\kappa-1}{\kappa}}-1\right]
$$

- theoretical capacity of single cylinder and action compressor $\dot{m}_{t}\left[\mathrm{~kg} \cdot \mathrm{~s}^{-1}\right]$

$$
\dot{m}_{t}=S \cdot L \cdot \rho_{g} \cdot n
$$

- transport efficiency $\eta_{\boldsymbol{d}}$

The main effect - volumetric efficiency

$$
\eta_{\check{s}} \cdot \eta_{t} \cdot \eta_{n}=0,75 \div 0,95
$$

gases expansion from clearance space -
volumetric efficiency
$\eta_{o}=\frac{V_{s}}{V_{z}}=\frac{V_{z}+V_{o}-V_{e}}{V_{z}}$
pressure losses in suction
gases heating at suction
$\eta_{0}=0 \rightarrow$ critical CR p_{2} / p_{1}, all sucked gas is compressed into clearance space

- capacity of compressor $m\left[\mathrm{~kg} \cdot \mathrm{~s}^{-1}\right]$

$$
\eta_{d}=\frac{\dot{m}}{\dot{m}_{t}}
$$

$$
\Rightarrow \quad \dot{m}=\dot{m}_{t} \cdot \eta_{d}
$$

- heating during compression

$$
p v=\frac{R T}{M}
$$

EXAMPLE: Basic parameters of piston compressor

Single-stage double-action piston compressor with speed 180 rpm is used for compression of air with temperature $20^{\circ} \mathrm{C}$ from atmospherics pressure to 0.4 MPa . Inside diameter of cylinder is 200 mm and piston stroke is 250 mm . Suppose polytrophic compression with exponent 1.2. Determine:

1) capacity of compressor (transport efficiency $\eta_{d}=0.8$)
2) temperature of discharge air
3) power consumption of compressor (adiabatic efficiency $\eta_{c a d}=0.6$)

