FLOW IN PIPES, PIPE NETWORKS

Continuity equation - mass balance (G54)

$$
\bar{u}_{1} S_{1}=\bar{u}_{2} S_{2}
$$

Bernoulli equation - mechanical-energy balance (G71 - 74)

$$
\kappa_{1}^{2} \frac{\bar{u}_{1}^{2}}{2}+\frac{p_{1}}{\rho}+g h_{1}=\kappa_{2}^{2} \frac{\bar{u}_{2}^{2}}{2}+\frac{p_{2}}{\rho}+g h_{2}+e_{z}
$$

mechanical-energy loss
Laminar flow: $\quad \kappa^{2} \frac{\bar{u}^{2}}{2} \rightarrow 0 \quad$ (neglectable)

$$
e_{z}=\frac{p_{1}-p_{2}}{\rho}=\frac{-\Delta p}{\rho}=\frac{\Delta p_{z}}{\rho}
$$

Mechanical-energy loss for flow in pipe

Mechanical-energy loss due to skin friction for incompressible fluid (liquids) (G90-96)

Friction factor λ
Laminar flow:

$$
\lambda=\frac{A}{R e} \quad \begin{gathered}
\text { (pipe with circular cross-section } A=64) \\
d_{e}=\frac{4 S}{O}=4 \frac{\text { cross-sectional area of chanel }}{\text { wetted perimeter of chanel }}
\end{gathered}
$$

Turbulent flow:

$$
e_{z}=\lambda \frac{l}{d} \frac{\bar{u}^{2}}{2}
$$

Values of constant A for various shapes of cross-section

Dependence of friction factor λ on Reynolds number and relative

Values of absolute roughness $k_{a v}$ of pipes from different materials

Type resp. material of pipe	$\boldsymbol{k}_{\mathbf{a v}}$ $[\mathbf{m m} \boldsymbol{m}$
glass, brass, copper, drawn tubing	$0,0015 \div 0,0025$
seamless, steel drawn tubes, new	$0,03 \div 0,06$
steel welded tubes, new	$0,04 \div 0,1$
steel tubes, slightly corroded	$0,15 \div 0,4$
steel tubes, corroded	$0,5 \div 1,5$
steel tubes, galvanized	$0,1 \div 0,15$
cast iron, new	$0,2 \div 0,6$
cast iron, corroded	$1 \div 1,5$
cast iron asphalt dipped	$0,1 \div 0,15$
PVC	0,002
concrete, smooth	$0,3 \div 0,8$
concrete, rough	$1 \div 3$
asbestos cement tubes	$0,03 \div 0,1$

EXAMPLE: Friction loss for flow in pipe

$561 \cdot \mathrm{~s}^{-1}$ of liquid with temperature $25^{\circ} \mathrm{C}$ flow in horizontal slightly corroded steel tubes with length 600 m with inside diameter $\mathrm{d}=150 \mathrm{~mm}$. Determine value of pressure drop and loss due to skin friction in pipe.
Liquid:
a) water
b) 98% aqueous solution of glycerol $\left(\rho=1255 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, \mu=629 \mathrm{mPa} \cdot \mathrm{s}\right)$

EXAMPLE: Friction loss for flow in pipe with

 noncircular cross-sectionDetermine value of pressure drop in heat exchanger pipe in pipe with annulus cros-section. 98% aqueous solution of glycerol with temperature $25^{\circ} \mathrm{C}\left(\rho=1255 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, \square \mu=629 \mathrm{mPa} \cdot \mathrm{s}\right)$ has mass flow rate $40 \mathrm{~kg} \cdot \mathrm{~min}^{-1}$. Outside diameter of inside tube is $\mathrm{d}_{1}=32 \mathrm{~mm}$ and inside diameter of outside tube is $d_{2}=51 \mathrm{~mm}$. Length of exchanger is $L=25 \mathrm{~m}$.

Friction losses in expansion, contraction, pipe fittings and valves (G98-102)

$$
e_{z}=\lambda \frac{l_{e}}{d} \frac{\bar{u}^{2}}{2}
$$

$$
l_{e}=\frac{\zeta}{\lambda} d
$$

Table 2.10-1. Friction Loss for Turbulent Flow Through Valves and Fittings

Type of Fitting or Valve	Frictional Loss, Number of Velocity Heads, K_{f}	Frictional Loss, Equivalent Length of Straight Pipe in Pipe Diameters, L_{e} / D
Elbow, 45°	0.35	17
Elbow, 90°	0.75	35
Tee	1	50
Return bend	1.5	75
Coupling	0.04	2
Union	0.04	2
Gate valve		
Wide open	0.17	9
Half open	4.5	225
Globe valve		
Wide open	6.0	300
Half open	2.5	475
Angle valve, wide open	70.0	100
Check valve	2.0	3500
Ball	7.0	100
Swing	350	
Water meter, disk		

Source: R. H. Perry and C. H. Chilton, Chemical Engineers' Handbook, 5th ed. New York: McGraw-Hill Book Company, 1973. With permission.

Contraction

Expansion

Gradual expansion (diffuser)

$$
0<\varphi<40^{\circ} \Rightarrow \zeta_{1}=\zeta_{r}+\zeta_{t}
$$

Pipe entrance

Tee

$$
\Delta p=\zeta^{\prime} \frac{\bar{u}^{2}}{2} \rho
$$

$$
\zeta=\zeta_{o}+\zeta_{t}
$$

$$
\dot{v}_{1} \rightarrow \underset{s_{1}}{s_{2} \mid \prod_{\dot{v}_{2}}=s_{3}} \dot{v}_{3}
$$

Valves

A - Check valve, screwed
B - Back straight-way valve
C - Check valve, casted
D - Back angle valve
E - Check angle valve
F - Check oblique valve
Š - Gate valves

http://www.jmahod.cz

EXAMPLE: Determination of pump head pressure

Determinate head pressure of pump which give flow rate $240 \mathrm{I} \cdot \mathrm{min}^{-1}$ of water with temperature $15{ }^{\circ} \mathrm{C}$. Water is pumping up to storage tank with pressure over liquid surface 0.2 MPa . Pipes are made from slightly corroded steel tubes with outside diameter 57 mm and thickness of wall 3 mm .

Basic cases for pipe design

Calculation of pipe diameter at given flow rate without demand of loss (the most frequently case G107)

$$
S=\frac{\dot{V}}{\bar{u}} \quad d=\sqrt{\frac{4 S}{\pi}}
$$

Table 2.10-3. Representative Ranges of Velocities in Steel Pipes

		Velocity	
Type of Fluid	Type of Flow	$f t / s$	$\mathrm{~m} / \mathrm{s}$
Nonviscous liquid	Inlet to pump	$2-3$	$0.6-0.9$
	Process line or pump discharge	5.7	1.7
Viscous liquid	Inlet to pump	$0.2-0.8$	$0.06-0.25$
	Process line or pump discharge	3	0.9
Gas air	Process line	53	16
Steam 100 psig	Process line	38	11.6

Geankopolis, C. J.: Transport Processes and Separation Process Principles. $4^{\text {th }}$ edition. New Jersey: Publishing as Prentice Hall PTR, 2003.1026 p. ISBN 0-13-101367-X.

Calculation of flow rate at given loss and pipe diameter

Given: mechanical-energy loss \boldsymbol{e}_{z} dimensions of pipe $\left(\boldsymbol{l}, \boldsymbol{d}, \boldsymbol{k}_{\boldsymbol{a} v}\right)$ liquid density ρ and viscosity $\boldsymbol{\mu}$

$$
e_{z}=\lambda \frac{l}{d} \frac{\bar{u}^{2}}{2} \Rightarrow \lambda=\frac{2 e_{z} d}{\bar{u}^{2} l}
$$

$$
\begin{array}{ll}
\lambda e^{2}=\frac{2 e_{d} d}{\bar{u}^{2} l} \frac{\bar{u}^{2} d^{2} \rho^{2}}{\mu^{2}}=\frac{2 e \rho_{z} \rho^{2} d^{3}}{\mu^{2} l} & \lambda=f\left(R e, k^{*}\right), R e=\frac{\bar{u} d \rho}{\mu} \\
\Downarrow \\
\operatorname{Re} \sqrt{\lambda}=\frac{d}{\mu} \sqrt{\frac{2 e_{z} \rho^{2} d}{l}} & \frac{1}{\sqrt{\lambda}}=f\left(\operatorname{Re} \sqrt{\lambda}, k^{*}\right)
\end{array}
$$

$$
\operatorname{Re} \sqrt{\lambda} \frac{1}{\sqrt{\lambda}}=\operatorname{Re} \Rightarrow \bar{u}=\frac{\mu R e}{d \rho}
$$

$$
\frac{1}{\sqrt{\lambda}}=f\left(\operatorname{Re} \sqrt{\lambda}, k^{*}\right)
$$

Calculation of pipe diameter at given loss and flow

 rateGiven: flow rate $\dot{\boldsymbol{V}}$ mechanical-energy loss \boldsymbol{e}_{z} pipe length l
liquid density ρ and viscosity $\boldsymbol{\mu}$

$$
R e \sqrt[5]{\lambda}=\frac{\rho^{\prime}}{\mu} \sqrt[5]{\frac{128 \dot{V}^{3} e_{z}}{\pi^{3} l}}
$$

$$
\bar{u}=\frac{4 \dot{V}}{\pi d^{2}}
$$

$$
\stackrel{L}{\rightleftarrows}
$$

$$
\begin{gathered}
\lambda=\frac{2 e_{z} d}{\bar{u}^{2} l}=\frac{\pi^{2} e_{z} d^{5}}{8 \dot{V}^{2} l} \\
\lambda=f\left(R e, k^{*}\right), k^{*}=\frac{k_{s \dot{r}}}{d} \\
\operatorname{Re}=\frac{\bar{u} d \rho}{\mu}=\frac{4 \dot{V} \rho}{\pi d \mu}
\end{gathered}
$$

$$
\Downarrow
$$

$$
\frac{R e}{k^{*}}=\frac{4 \dot{V} \rho}{\pi k_{s t r} \mu}
$$

$$
1 / \sqrt[5]{\lambda}=f\left(\operatorname{Re}^{5} \sqrt[5]{\lambda}, \operatorname{Rek}^{*-1}\right)
$$

$$
\operatorname{Re} \sqrt[5]{\lambda} \cdot \frac{1}{\sqrt[5]{\lambda}}=R e \Rightarrow d=\frac{\mu R e}{\bar{u} \rho}
$$

$$
1 / \sqrt[5]{\lambda}=f\left(\operatorname{Re}^{5} \sqrt{\lambda}, \operatorname{Rek}^{*-1}\right)
$$

EXAMPLE: Calculation of flow rate

84% aqueous solution of glycerol ($\rho=1220 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, \mu=99.6 \mathrm{mPa} \cdot \mathrm{s}$) is in tank with height of liquid surface over bases 11 m . Glycerol gravity outflow to second tank with height of liquid surface over same bases 1 m . Pipe is made from steel with outside diameter 28 mm and thickness of wall 1.5 mm and its length is 112 m . Determine volumetric flow rate of glycerol. Losses of fittings and valves are neglectable.

EXAMPLE: Calculation of pipe diameter

Solution of ETHANOL ($\rho=970 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, \mu=2,18 \mathrm{mPa} \cdot \mathrm{s}$) gravity outflow from open tank with flow rate $20 \mathrm{~m}^{3} \cdot \mathrm{~h}^{-1}$ via pipe with length 300 m to second open tank. Liquid surface in upper tank is 2.4 m over liquid surface of second tank. Which pipe diameter is necessary for required flow rate. Pipe is made from steel with average roughness 0.2 mm . Losses of fittings and valves are express as 10% from pipe length.

Design of pipe networks

Procedure of solving:

1) Bernoulli equation for all pipes
2) Continuity equation for all nodes
3) Solve system of equations

Compressible flow of gases

Isothermal compressible flow (G107-110)

Velocity of compression wave (velocity of sound in fluid)

$$
\bar{c}^{2}=\frac{p}{\rho}=p v
$$

Bernoulli equation $\frac{1}{2} u^{2}+\frac{p}{\rho}=\frac{1}{2}(u+\mathrm{d} u)^{2}+\frac{p+\mathrm{d} p}{\rho}+\mathrm{d} e_{z}$

$$
\frac{1}{2} \bar{u}^{2}-\frac{1}{2}(\bar{u}+\mathrm{d} \bar{u})^{2}-\frac{\mathrm{d} p}{\rho}-\lambda \frac{\mathrm{d} l}{d} \frac{\bar{u}^{2}}{2}=0 \quad \mathrm{~d} \bar{u}^{2} \rightarrow 0
$$

$$
\bar{u} d \bar{u}+\frac{\mathrm{d} p}{\rho}+\frac{\lambda}{d} \frac{\bar{u}^{2}}{2} d l=0
$$

Mass velocity (density of mass flow)

$$
\bar{w}=\bar{u} \rho=\mathrm{const} .
$$

$$
\begin{gathered}
\bar{u} d \bar{u}+\frac{\mathrm{d} p}{\rho}+\frac{\lambda}{d} \frac{\bar{u}^{2}}{2} d l=0 \\
-\frac{\bar{w}^{2}}{\rho^{3}} \mathrm{~d} \rho+\frac{\mathrm{d} p}{\rho}+\frac{\lambda \bar{w}^{2}}{d \cdot 2 \rho^{2}} \mathrm{~d} l=0
\end{gathered}
$$

State equation for ideal gas

$$
\frac{p}{\rho}=\frac{R T}{M}, T=\text { const. } \Rightarrow \mathrm{d} \rho=\frac{M}{R T} \mathrm{~d} p
$$

$$
-\int_{p_{1}}^{p_{2}} \frac{\mathrm{~d} p}{p}+\frac{M}{R T \bar{w}^{2}} \int_{p_{1}}^{p_{2}} p \mathrm{~d} p+\frac{1}{2} \frac{\lambda}{d} \int_{0}^{l} \mathrm{~d} l=0
$$

$$
\begin{aligned}
& 0,5 \\
& 1-\frac{\mathrm{RT} \bar{W}^{2} \frac{\lambda l}{2 M p_{1}^{2}} \frac{1}{\mathrm{~d}}}{0,6} \\
& 0,7
\end{aligned}
$$

$$
\ln \left(\frac{p_{1}}{p_{2}}\right)^{2}-\frac{M}{R T \bar{w}^{2}}\left(p_{1}^{2}-p_{2}^{2}\right)+\lambda \frac{l}{d}=0
$$

Maximum flow for compressible flow of gas

$$
\mathrm{d} \bar{w} / \mathrm{d} p_{2}=0
$$

$$
-\frac{1}{p_{2}}+\frac{M}{R T \bar{w}^{2}} p_{2}+\frac{M}{R T \bar{w}^{3}}\left(p_{1}^{2}-p_{2}^{2}\right) \frac{\mathrm{d} \bar{w}}{\mathrm{~d} p_{2}}=0
$$

$$
\Downarrow
$$

$$
p_{k r}^{2}=\frac{R T}{M} \bar{w}_{k r}^{2}
$$

$$
\bar{u}_{k r}=\frac{\bar{w}_{k r}}{\rho_{k r}}=\sqrt{p_{k r} v_{k r}}=\sqrt{\frac{p_{k r}}{\rho_{k r}}}
$$

EXAMPLE: Pressure drop for flow of Methane

Methane flow in long-distance (3 km) pipe from storage tank withhead pressure 0.6 MPa . Pipe is made from slightly corroded steel tubes with outside diameter 630 mm and thickness of wall 5 mm . Determine pressure drop for Methane mass flow rate $40 \mathrm{~kg} \cdot \mathrm{~s}^{-1}$. Suppose isothermal flow with temperature $20^{\circ} \mathrm{C}$ (dynamic viscosity of Methane is $1,1 \cdot 10^{-5} \mathrm{~Pa} \cdot \mathrm{~s}$).

